Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Mol Model ; 27(5): 128, 2021 Apr 17.
Article in English | MEDLINE | ID: covidwho-1188102

ABSTRACT

The COVID-19 main protease (Mpro), one of the conserved proteins of the novel coronavirus is crucial for its replication and so is a very lucrative drug target. Till now, there is no drug molecule that has been convincingly identified as the inhibitor of the function of this protein. The current pandemic situation demands a shortcut to quickly reach to a lead compound or a drug, which may not be the best but might serve as an interim solution at least. Following this notion, the present investigation uses virtual screening to find a molecule which is alraedy approved as a drug for some other disease but could be repurposed to inhibit Mpro. The potential of the present method of work to identify such a molecule, which otherwise would have been missed out, lies in the fact that instead of just using the crystallographically identified conformation of the receptor's ligand binding pocket, molecular dynamics generated ensemble of conformations has been used. It implicitly included the possibilities of "induced-fit" and/or "population shift" mechanisms of ligand fitting. As a result, the investigation has not only identified antiviral drugs like ribavirin, ritonavir, etc., but it has also captured a wide variety of drugs for various other diseases like amrubicin, cangrelor, desmopressin, diosmin, etc. as the potent possibilities. Some of these ligands are versatile to form stable interactions with various different conformations of the receptor and therefore have been statistically surfaced in the investigation. Overall the investigation offers a wide range of compounds for further testing to confirm their scopes of applications to combat the COVID-19 pandemic.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Drug Repositioning , SARS-CoV-2/drug effects , Drug Discovery/methods , Humans , Molecular Dynamics Simulation , Protein Conformation
2.
Biol Futur ; 72(3): 273-280, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1060798

ABSTRACT

Aim The article reviews the current usage of biocides during this lockdown period for sanitizing our living areas due to the pandemic and discusses the pros and cons. Subject COVID-19 spread like wildfire to over 200 countries of the world across all continents. The causative agent, novel coronavirus (SARS-CoV-2) is being counter attacked by a thorough application of disinfectants and sterilants. However, the virus mutated over 30 times during this global pandemic, creating panic and leading to enhanced pathogenicity and consequently to more stringent sanitation measures for controlling it. However, excessive use of different types of biocides for disinfecting surfaces is highly alarming in several cases. Extensive application of biocides affects the microbial flora, leading to an abrupt decrease in the number and diversity of beneficial microbes that may directly affect the functioning of nutrient cycles. Results The increased concentration of biocides in agricultural land via surface water or pond water indirectly affect the soil and water ecosystem, soil aggregation and fertility. This will also lead to the flourishing of resistant strains due to loss of competition from the other species, which fail to persist after prolonged use of biocides. Conclusion It is necessary to realize the environmental impacts of biocides and sterilants. It is the right time to stop their entry into the agricultural ecosystem by following adequate management strategies and complete neutralization.


Subject(s)
COVID-19/virology , Disinfectants/pharmacology , Environmental Pollution , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Disinfectants/administration & dosage , Humans , Mutation
3.
Transl Med Commun ; 5(1): 21, 2020.
Article in English | MEDLINE | ID: covidwho-909168

ABSTRACT

Since the birth of Christ, in these 2019 years, the man on earth has never experienced a survival challenge from any acellular protist compared to SARS-CoV-2. No specific drugs yet been approved. The host immunity is the only alternative to prevent and or reduce the infection and mortality rate as well. Here, a novel mechanism of melanin mediated host immunity is proposed having potent biotechnological prospects in health care management of COVID-19. Vitamin D is known to enhance the rate of melanin synthesis; and this may concurrently regulate the expression of furin expression. In silico analyses have revealed that the intermediates of melanin are capable of binding strongly with the active site of furin protease. On the other hand, furin expression is negatively regulated via 1-α-hydroxylase (CYP27B1), that belongs to vitamin-D pathway and controls cellular calcium levels. Here, we have envisaged the availability of biological melanin and elucidated the bio-medical potential. Thus, we propose a possible synergistic application of melanin and the enzyme CYP27B1 (regulates vitamin D biosynthesis) as a novel strategy to prevent viral entry through the inactivation of furin protease and aid in boosting our immunity at the cellular and humoral levels.

SELECTION OF CITATIONS
SEARCH DETAIL